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1) Participants Participants were undergraduate students 
participating for course credit. Among 212 participants who 
were recruited for this experiment, 200 participants completed 
the entire experiment (female = 159; male = 45).  
  

2) Procedure All participants conducted the category 
learning task first and then finished two questionnaires— 
PANAS-X and the goal orientation questionnaire. In the 
category learning task, participants received 14 combinations 
of cards one at a time (150 trials in total) and learned to 
predict whether each combination belonged to “shine” or 
“rain” categories on the basis of feedback that was provided 
after each response (Fig. 2). Each card was probabilistically 
linked to the outcome of “shine” approximately 75, 57, 43, 25 
% of the time.  

 
To start a trial, the participant first pressed the Next button, 

the cursor was then placed automatically at the center of the 
button, and the stimulus picture (card combination) was 
presented on the monitor (Fig. 2). To indicate a selection, 
participants pressed a target button (either the left or right 
button shown at the top left / right corner of the screen). The 
stimulus disappeared soon after and feedback was presented 
(e.g., “Yes. It’s shine”). This cycle was repeated 150 times. 
The task was self-paced.   

3) Apparatus and Materials 

The category learning task was administered by a 
customized Visual Basic.Net program. The program collected 
participants’ response, response times, and EEG signal 
simultaneously. For EEG data acquisition, we employed 
Neurosky MindWave Mobile (http://neurosky.com/). This 
device has been used in other neuropsychological studies and 
has been shown to be reliable and comparable to research-
grade medical EEG devices. For example, Johnstone et al. 
[33] compared Neurosky MindWave Mobile to another 
research-grade system (Nuamps, Neuroscan, Compumedics, 
Melbourne Australia) and reported that power spectra 
obtained from the two systems were highly correlated in eye-
closed and eye-opened resting conditions. Hemington and 
Reynolds [34] also applied the system to test children with 
Fetal Alcohol Spectrum Disorder (FASD) and found different 

frontal EEG activities in children with FASD and normal 
controls.  

 The single dry electrode was placed at a left-forehead 
location (targeted at Fp1) with the reference electrode placed 
on the left earlobe. The EEG signal was recorded at a 
sampling rate of 512 Hz and was processed internally by 
Neurosky’s proprietary program ThinkGearTM. The single dry 
sensor placed at the left forehead and reference electrode 
assessed potential differences (voltages), which were 
amplified 8000x to enhance the EEG signals. The signals were 
passed by low and high pass filters to preserve signals in the 
1-50Hz range. After correcting for possible aliasing, these 
signals were sampled at 512Hz. The EEG signal was then sent 
to the computer by BlueTooth (Kinivo BTD-400 Bluetooth 
USB Adapter). Each second, Neurosky’s proprietary 
algorithm ThinkGearTM applied standard FFT on the filtered 
signal and produced commonly recognized eight EEG powers: 
delta (0.5 -2.75Hz), theta (3.5 – 6.75 Hz), low-alpha (7.5 – 
9.25Hz), high-alpha (10 – 11.75Hz), low-beta (13 – 16.75Hz), 
high-beta (18 – 29.75Hz), low-gamma (31 – 39Hz), and mid 
gamma (41 – 49.75Hz) together with proprietary eSenseTM 
attention and meditation meters, which were computed with a 
wide spectrum of brain waves in both time and frequency 
domains. The attention meter, which measures attentiveness of 
the user, is said to have more emphasis on the beta wave, and 
the meditation meter, which measures the calmness and levels 
of self-control, has more emphasis on the alpha wave. The 
meter value is reported on a relative scale of 1-100.   

 

B. Results 
This section begins 

with summaries of basic 
behavioral data—
durations for the 
category learning task, 
mean response times for 
individual trials, and task 
accuracy—followed by 
results from the EEG 
analysis. 

Basic behavioral results. On average, participants spent 
approximately 13 minutes to complete the category learning 
task (M = 13.2 minutes; SD = 1.83). Because the task was self-
paced, there was a wide range of individual differences in 
completing the task. Some participants spent nearly 20 minutes 
or more while others finished the task in less than 10 minutes 
(Fig 4).  

Response times for individual trials also varied widely. On 
average, participants responded to each trial in 2.2 seconds (SD 
= 0.62). However response times became shorter as the 
learning task progressed. In the first 30 trials, participants 
responded in 2.7 seconds (SD = 0.81); in the last 30 trials 
(trials 121-150), the average response time dropped to 1.7 
seconds (SD = 0.52) (Fig. 5a). In the same vein, categorization 
accuracy was subject to trials. Accuracy improved as trials 
progressed (Fig. 5b).  This preliminary analysis suggests that 

Fig. 3.  An illustration of the experiment. (a) During the category learning 
task, participants’ EEG signals were collected. Dissimilarity distances of 
every pair of EEG signals were measured by DTW—(b) and (c). To predict 
the emotion rating of a participant (red square), emotion ratings of k-nearest 
neighbors (participants) were averaged—(d). 

 
Fig. 4. Mean durations for the category 
learning task (minutes) 

…
…
…

N=200

…

EEG = 600~1200 
data points / person

DTW
? Emotion?

= average 
(nearest k 
neighbors)

kNN

(a) (b) (c) (d)

2D representation of 
pair-wise dissimilarity

978-1-4799-9953-8/15/$31.00 ©2015 IEEE 059



response patterns (response times and accuracy) varied widely 
both within and between participants.  

C. EEG analysis 
In our EEG analysis, we first examined the impact of 

DTW with powers of 8 spectral bands and two meters, 
attention and meditation, which were collected throughout the 
category learning task every second (1 Hz) (600 to 1300 data 
points per participant in each spectral band). For all band 
signals, we calculated relative band powers following the 
procedure adopted by Johnstone et al. [33]; we summed the 
powers of all eight bands and then divided the power for each 
band by the total, which was expressed as a percentage. For 
the DTW algorithm, we employed the default values specified 
in the R package dtw (Euclidean distance and no windowing) 
[25]. In k-NN, we fixed k = 4 in all our analyses following the 
recommendation by Enas and Choi (k=(N)2/8) [35]. No 
parameter tuning was employed in our data analysis. Below 
we begin with a basic analysis and then examine the impact of 
standardizing, smoothing, and segmenting. We also discuss 
“theory-based” knowledge-driven analysis. 

TABLE 1                BASIC RESULTS 

 
Note. Spearman’s correlation coefficients for predicted and observed emotion ratings. p****< 0.001;  
0.001 ≤ p*** < 0.005; 0.005 ≤ p** < 0.01; 0.01 ≤ p* < 0.05; 0.05 ≤ p# < 0.1. The correlations whose p 
values are above 0.1 are indicated by “-“. 

Basic analysis. As Table 1 shows, DTW using the attention 
and meditation meters demonstrated superior performance. 
Given the attention meter, we found small but highly 
significant correlations between predicted and observed 
emotion ratings for attentiveness and positive affect to some 
extent. The meditation meter, which corresponds to calmness 
and mental control, also predicted emotion ratings of fear, 

which is related to task anxiety of learners. In addition, we 
found that theta and high beta powers had significant 
predictive performance. Because the attention and meditation 
meters were most useful, we focus on these two measures in 
the subsequent analyses.   

Standardizing lengths of time series data. In this analysis, 
we standardized all time series data into 100 or 200 data 
points and applied DTW for standardized data sets. For 
example, given two time series data with 1000 and 600 data 
points, respectively, we normalized them into 200 points by 
dividing each data set into 200 equally spaced bins and 
calculating the mean in each bin. In this manner, all EEG 
signals obtained from individual participants were reduced to 
an equal length (either 100 or 200 data points). This analysis 
however weakened DTW’s prediction performance (Table 2). 
Apparently, standardizing the length of data points was 
detrimental.  

TABLE 2                STANDARDIZING

 
 

Smoothing data points. EEG data are prone to noise. To 
capture overall trends of time series signals, smoothing by 
moving averages is a common practice for time series data 
preprocessing. Here, we employed a window size of 10, 20, or 
30 and examined the impact of smoothing. This measure 
however completely eliminated the prediction performance of 
DTW. All correlations disappeared after smoothing.  

Segmentation. The lack of significant performance in our 
DTW analysis through standardizing and smoothing suggests 
that the advantage of DTW analysis most likely stemmed from 
DTW’s ability to tune in local trends of EEG signals. To test 
this idea, we employed theory-based data segmentations. As 
Fig. 5 shows, learning occurred earlier in the task. In this 
regard, some segment of learning trials could be more 
informative than other parts for DTW-based EEG assessment. 
Following this logic, we divided individual time series data 

Band Hz
Positive 
Affect

Negative 
Affect Attentive Fear

Delta power 0.5 -2.75Hz - - - -
Theta power 3.5-6.75Hz - - 0.15* -

Low Alpha power 7.5-9.25Hz - - - -
High Alpha power 10-11.75Hz - - - -
Low Beta power 13-16.75Hz - - - -
High Beta power 18-29.75Hz - 0.14 *

Low Gamma power 31-39.75Hz - - - -
Mid Gamma power 41-49.75Hz - - - -

Attention meter ~  Beta 0.14* - 0.22 *** -
Meditation meter ~ Alpha - 0.13# - 0.21***

data 
points

Positive 
Affect

Negative 
Affect Attentive Fear

Attention meter 100 0.16* - - -
200 - - - -

Meditation meter 100 - - - -
200 - - - 0.13#

(a) (b)

  

Fig. 5. Boxplots for (a) response times and (b) accuracy shown relative to five blocks of learning trials. Mean and standard deviations of response times decreased as 
the learning trial progressed. Mean accuracy also followed trials.   
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into three segments according to the sequence of the learning 
trials—early, middle and late segments. In the early segment, 
we selected the first 40% of the data points in each participant. 
In the middle segment, we selected the middle 40% of the data 
points. In the last 40% segment, we selected the last 40% of 
the data points (there were about 10% overlaps).  For each 
segment, we applied DTW separately. As Table 3 shows, this 
procedure helped emotion prediction. In particular, the 
meditation meter collected earlier in the task turned out to be 
particularly useful. 

TABLE 3         SEGMENTING 

 
 

TABLE 4              GOAL ORIENTATION 

 
Participants’ goal orientation. Another important theory-

based parameter is personal differences. Individual learners 
have different attitudes toward learning. Some learners focus 
on mastering the task (learning goal—LG), while others are 
more concerned with task performance (performance goal—
PG) or avoid revealing one’s performance (avoid performance 
goal—APG). These different learning attitudes of individual 
learners are known to influence their learning experience 
profoundly [36]. Here, using VandaWelle’s goal orientation 
questionnaire, we divided participants into high / low 
categories of goal orientations (high/low LG, PG, APG) and 
applied DTW separately. This theory-driven approach 
improved prediction performance of DTW (Table 4).  

IV. DISCUSSION 

A. Summary and Implications 
Examining feelings of computer users using EEG signals 

in a heterogeneous learning environment is difficult due to 
various limitations inherent in EEG-based analysis. In this 
study, we investigated the possibility of applying DTW, which 
has been successfully implemented in speech recognition, 
information retrieval, and motion detection. Results from the 
experiment provide both promising and cautionary messages. 

On the positive side, the study suggests that DTW is useful for 
EEG-based affective computing in a naturalistic setting. On 
the other hand, results also highlight the difficulty of applying 
DTW. We offer the following caveats. 

a) Straightforward measures of spectral powers had 
little use for DTW analysis.  

As in other EEG-based emotion analysis (see [3]), careful 
feature extraction appears critical. We used proprietary 
emotion meters, attention and meditation. We do not know 
exactly how these meters are calculated. Nonetheless, 
identifying important EEG features from raw data appears 
critical to improve DTW performance. The distributions of 
individual frequencies inside particular bands (e.g., [4]) may 
provide a fruitful avenue.  

b) Smoothing and standardizing hampered DTW 
performance 

To our surprise, smoothing with rolling windows did not 
improve DTW’s prediction performance. Smoothing is useful 
to clarify an overall trend of time series data. Our finding that 
smoothing eliminated correlations suggest that DTW was 
effective in capturing some local characteristics of EEG 
signals. It appears that some feature extraction method, such 
as identifying local motif of time series data [37], can be 
particularly useful for DTW application of EEG-based 
affective computing.  

c) Theory-based segmentation was helpful.   
Segmenting learning trials and learners into some 

meaningful units seem to improve DTW’s prediction 
performance. Dividing the participants in terms of their 
attitudes also improved the performance. Some background 
knowledge about the task at hand and the characteristics of the 
person who is actually engaging in the task are likely to 
enhance the resolution of DTW prediction.  

d) Future directions 
Comparisons with other methods using advanced DTW 

such as Canonical Time Warping [38, 39] should be 
performed in the context that adopt different EEG features 
applied in different settings [40]. 

B. Conclusion 
This study shows possible avenues and hurdles for DTW-

based EEG analysis for affective computing in a self-paced 
learning task. The study suggests that identifying local 
features that can enhance prediction performance is critical. 
For this, both theory-based and data-driven approaches should 
be incorporated. On the theory-based side, it is important to 
know more about the attitude and personality of the learners as 
well as specific constraints of the task at hand. On the data-
driven side, identifying local features, such as local motifs of 
time series data, are likely to improve DTW-based affective 
computing. 
  

learning 
trials

Positive 
Affect

Negative 
Affect Attentive Fear

Attention meter early - - 0.14* -
middle 0.14# - - -

late - - - -
Meditation meter early - 0.23**** - 0.20***

middle - - - 0.14*
late - - -

goal
Positive 
Affect

Negative 
Affect Attentive Fear

Attention meter LG high - - 0.18# -
low - - - -

PG high - - - -
low - - 0.22* -

APG high - - - -
low 0.24* - 0.22* -

Meditation meter LG high - - - -
low - 0.19# - -

PG high - - - -
low - - - -

APG high - - - -
low - - - -
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