
lable at ScienceDirect

Hearing Research xxx (2015) 1e5
Contents lists avai
Hearing Research

journal homepage: www.elsevier .com/locate/heares
Research paper
Binaural beats increase interhemispheric alpha-band coherence
between auditory cortices

Marco Solc�a, Anaïs Mottaz, Adrian G. Guggisberg*

Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital and University of Geneva, CH-1211 Geneva 14, Switzerland
a r t i c l e i n f o

Article history:
Received 14 June 2015
Received in revised form
18 September 2015
Accepted 22 September 2015
Available online xxx

Keywords:
Functional connectivity
Alpha band
EEG
Phase synchrony
Dichotic digit test
Interhemispheric synchronization
* Corresponding author. Service de Neuror�e�educatio
Gen�eve, Av. de Beau-S�ejour 26, CH-1211 Geneva 14, S

E-mail address: aguggis@gmail.com (A.G. Guggisb

http://dx.doi.org/10.1016/j.heares.2015.09.011
0378-5955/© 2015 Elsevier B.V. All rights reserved.

Please cite this article in press as: Solc�a, M.,
Hearing Research (2015), http://dx.doi.org/1
a b s t r a c t

Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are
presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes
through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms
(EEG) at rest and while participants listened to BBs or a monaural control condition during which both
tones were presented to both ears. We calculated for each condition the interhemispheric coherence,
which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural
beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat
frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric
coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence
increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit
task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band
oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to
reflect binaural integration rather than entrainment.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Human brain function crucially depends on interregional neural
communication (Varela et al., 2001). Such interactions are thought
to be accompanied by a synchronization of oscillations between
different brain regions (Aertsen et al., 1989; Gray and Singer, 1989;
Engel et al., 1992; Fries, 2005). Interregional synchronization can be
quantified with the concept of functional connectivity (FC), which
is a measure of the statistical dependency between activities in
different brain regions. Interestingly, FC has been shown to linearly
correlate with behavioral performance in a variety of cognitive and
motor functions. In other words, the more synchronous neural
oscillations are between nodes of a given network, the better is the
behavioral performance in tasks relying on that network (Hummel
and Gerloff, 2005; Fox et al., 2007; Guggisberg et al., 2015).
Therefore, interventions leading to modulation of FC should have
beneficial behavioral effects and could lead to new applications and
therapies.

One intervention that has been suggested to provide such
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modulation of neural oscillation synchrony is the binaural pre-
sentation of tones with slightly different frequencies (Atwater,
2004). If two sinusoidal tones with slightly different frequencies
are played simultaneously, one perceives a tone with their average
frequency plus a so-called beat, i.e., a modulation of the amplitude
at a rate equal to the difference between them. For instance, a tone
of 395 Hz presented together with a tone of 405 Hz will produce a
perceived frequency of 400 Hz, whichmodulates in amplitude with
a frequency of 10 Hz (Moore, 2012). If the two tones are presented
separately to each ear, a similar beat is perceived by the subject
although no such physical sound exists (Oster, 1973). This auditory
illusion is known as BBs and has been interpreted as arising from
the convergence of phase preserved neural activity from the two
ears in binaurally sensitive neurons within the medial superior
olivary nucleus (Wernick and Starr, 1968; Kuwada et al., 1979).

A common assumption of binaural beats is that they can elicit an
entrainment effect of neural oscillation at their proper frequency
(Vernon, 2009). Many electrophysiological studies have explored
the effect of BBs on oscillatory amplitude with contradictory re-
sults. Some authors have reported increases in amplitude following
exposure to binaural beats compared to resting state (Karino et al.,
2004; Schwarz and Taylor, 2005; Karino et al., 2006; Draganova
et al., 2008; Pratt et al., 2009; Pratt et al., 2010; Grose and Mamo,
interhemispheric alpha-band coherence between auditory cortices,
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2012) whilst others have failed to find evidence of such a change
(Wahbeh et al., 2007; Goodin et al., 2012; Vernon et al., 2014). In
any case, it seems that if BBs increase power, it is to a smaller extent
than the modulation occurring under the corresponding monaural
beat (MB) condition (Schwarz and Taylor, 2005; Draganova et al.,
2008; Pratt et al., 2010).

It has further been argued that BBs enhance the synchrony of
neural activity between the two brain hemispheres (Atwater, 1997,
2004). Recently, two studies have tested the effect of BBs on FC. Gao
and colleagues quantified frequency-specific synchronization be-
tween pairs of scalp electrodes (Gao et al., 2014). They detected
both increases and decreases in FC during BB stimulation compared
to a resting state without stimulation, depending on oscillation
frequency and electrode location. In another study, Becher and
colleagues (2014) measured phase synchronization between
channel pairs using intracranial signals mainly in the temporo-
lateral and temporo-basal area. Synchronization increases were
essentially found for stimulation with monaural 10-Hz beats at
medio-temporal sites and for stimulation with binaural 5-Hz beats
at temporo-lateral sites.

These two recent studies suggest that BBs could modulate
oscillation synchrony. However, it remains unclear whether these
changes occur in the beat frequency, which brain structures are
concerned, and if they are associated with behavioral changes.

This last point is of particular interest because BBs have been
praised for supposedly beneficial behavioral effects, such as relax-
ation, pain reduction, and other mental states (Wilson, 1990;
Rhodes, 1993). Several studies have demonstrated behavioral
changes following BBs such as improvement of vigilance (Lane
et al., 1998), increase in hypnotic susceptibility (Brady and
Stevens, 2000), reduction of self-reported anxiety (Le Scouarnec
et al., 2001; Padmanabhan et al., 2005), or increase in some
forms of creativity (Reedijk et al., 2013), although their robustness
remains to be demonstrated. Given the assumed positive effect of
BBs on synchronization between hemispheres, it would be partic-
ularly interesting to test whether such improved interhemipheric
integration can be measured on the behavioral level. However, no
study has probed the effect of BBs on tasks specifically requiring the
collaboration between cerebral hemispheres in general or between
both auditory cortices in particular.

The purpose of this study was therefore to directly test the hy-
pothesis that BBs synchronize activity between hemispheres both
at the neural and at the behavioral level. Experiment 1 examined
the effect of BBs on interhemispheric oscillation synchrony in the
auditory cortex using high-density scalp EEG and advanced source
localization. Experiment 2 probed behavioral effects in a task
requiring binaural listening. A dichotic listening task was used to
assess the ability of participants to discriminate numbers presented
simultaneously to different ears. This task has been validated for
behavioral assessment of information exchange between the
hemispheres across the corpus callosum (Musiek, 1983; Bellis and
Wilber, 2001; Westerhausen and Hugdahl, 2008). We therefore
used it to examine whether BBs improve the ability to exchange
information between the auditory cortices even after stimulation.

2. Materials and methods

The University Hospital of Geneva Ethics Committee approved
all procedures and all subjects gave informed written consent for
their participation to the study.

2.1. Experiment 1

2.1.1. Data acquisition
Sinusoidal tones of 395 Hz and 405 Hz (producing a beat of
Please cite this article in press as: Solc�a, M., et al., Binaural beats increase
Hearing Research (2015), http://dx.doi.org/10.1016/j.heares.2015.09.011
10 Hz), as well as 398 Hz and 402 Hz (producing a beat of 4 Hz)
were created using Matlab® (The MathWorks Inc., Natick, USA).
These pairs of tones were presented with stereo headphones in two
different conditions. In the monaural beat (MB) condition, which
was used as control, both tones were played to both ears (i.e. the
beat is a purely physical phenomenon perceived by each ear). In the
binaural beat condition, which was of interest here, each tone was
played to separate ears (i.e. the beat is created by binaural inte-
gration and doesn't exist at the single ear level). Sound intensity
was determined for each subject to be comfortably loud and kept
constant between conditions.

Nine normal-hearing subjects (6 females, mean age of 28 years
ranging from 25 to 34 years old) were asked to listen to 10 Hz BBs
and 10 HzMBs. Five participants were also exposed to 4 Hz BBs and
the correspondingMBs. Each soundwas presented continuously for
4 min in a counterbalanced order while a continuous EEG was
recorded at a sampling rate of 1024 Hz using a 128-channel Biosemi
Active Two EEG system (Biosemi B.V., Amsterdam, Netherlands).
The participants were asked to listen to the sound. A resting state
condition was also recorded before any auditory stimulation. All
conditions were recorded with the eyes closed. Vigilance was
checked by monitoring the EEG signal for signs of drowsiness or
sleep and by asking the subjects whether they had fallen asleep
after each condition. Artifacts like eye movements, muscular con-
tractions and electrode artifacts were excluded by visual inspec-
tion. About 3 min of clean data were retained for each condition
and each subject. Channels containing artifacts over prolonged
periods were completely excluded from further analyses.

2.1.2. Analysis
Analyses were performed in Matlab with NUTMEG (http://

nutmeg.berkeley.edu) (Dalal et al., 2011) and its functional con-
nectivity maps (FCM) toolbox (Guggisberg et al., 2011).

We divided the 3 min artifact-free data into non-overlapping
segments of 1s duration. Recordings were bandpass filtered be-
tween 1 and 20 Hz. A spherical model with anatomical constraints
(SMAC) (Spinelli et al., 2000) was created from the individual cor-
egistered magnetic resonance image of the head and used to
compute the lead potential. The signal was then projected to grey
matter voxels with an adaptive spatial filter (scalar minimum
variance beamformer) (Sekihara et al., 2004).

The Heschl Gyrus was defined as region of interest (ROI) using
the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002) since we expected changes in the primary auditory
cortex during auditory stimulation.

Power spectrogram was computed using Fourier trans-
formation. The difference in power between resting state, MBs and
BBs conditions was compared in the Heschl Gyrus and tested
against the null-hypothesis of zero change using two-tailed paired
t-test.

The detailed steps of FC analysis and their validation have been
described previously (Guggisberg et al., 2008; Guggisberg et al.,
2011). We calculated the imaginary component of coherence (IC)
(Nolte et al., 2004) between each voxel and its homologous
contralateral region during the entire auditory stimulus, hence
resulting in a measure of interhemispheric coherence or inter-
hemispheric oscillation synchrony. We calculated the spectrum of
interhemispheric coherence between 1 and 20 Hz in the Heschl
Gyrus by averaging across its voxels. Differences between rest, MBs
and BBs conditions were specifically tested in alpha and theta band
given the auditory stimulation that we used, using a two-tailed
paired t-test.

Finally, to ensure not to miss coherence changes in other brain
areas, we created an interhemispheric FC map of the whole brain in
a voxel-wise manner. Differences between rest, MBs and BBs
interhemispheric alpha-band coherence between auditory cortices,
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Fig. 1. Effect of BBs on interhemispheric coherence. Both (A) 10 Hz BBs and (B) 4 Hz
BBs produced a significant increase in interhemispheric coherence in alpha frequencies
(9e11 Hz) between the primary auditory cortices compared to MBs. Note the similarity
of the patterns of the two graphs. (C) Subtraction of FC map during BBs from the FC
map during MBs shows a significant increase in interhemispheric alpha-band coher-
ence in fronto-temporo-parietal areas around the auditory cortex (p < .05
uncorrected).
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conditions were tested with statistical non-parametric mapping for
the voxel-wise map.

2.2. Experiment 2

We created two sets of a dichotic digit task to assess if BBs could
increase binaural auditory discriminability. Each set contained 20
trials, composed of numbers ranging from 1 to 12 spoken by a male
native French speaker. Four different numbers were simultaneously
presented to both ears, two per ear, and the participants were
instructed to recognize the four different numbers of each trial. One
set of the test was presented before and after having listened to
3 min of 10 Hz BBs (395 Hz and 405 Hz tones) and the other set
before and after the corresponding MBs. Sounds and tests were
presented in counterbalanced order.

Eighteen healthy subjects participated (10 females, mean age of
26 years ranging from 21 to 32 years old). Performance was
quantified by calculating the number of correct answers out of the
80 total heard numbers (20 trials with 4 digits each). Improvement
was computed for each condition by subtracting the number of
correct answers after the auditory stimulation from the number of
correct answers before stimulation. Differences in improvement
between BBs and MBs conditions were tested for significance with
a two-tailed paired t-test. We then confirm null effects using JZS
Bayes factor tests with default prior scales (Morey and Rouder,
2011) so that a Bayes factor (B) < 0.33 implies substantial evi-
dence for the null hypothesis. Analyses were performed with R
(R Development Core Team, 2013) including the Bayes Factor
package (Morey and Rouder, 2011).

3. Results

3.1. Experiment 1

No significant differences were found in oscillation power in the
auditory cortices between BBs, MBs and resting state conditions
during 4 Hz and 10 Hz beats (minimal voxel value in 9e11 Hz band:
p > .26 and p > .39 respectively).

Conversely, interhemispheric coherence between the Heschl
gyri was significantly greater in the alpha band (9e11 Hz) during
10 Hz BBs stimulation compared to a 10 HzMB condition (t8 ¼ 3.24;
p ¼ .012) (Fig. 1A) and resting state (t8 ¼ 3.83; p ¼ .005). A similar
coherence spectrogram pattern was found during 4 Hz BBs stimu-
lation compared to 4 Hz MB (Fig. 1A and B), with a significant in-
crease in interhemispheric coherence at 9 Hz (t4 ¼ 3.87; p ¼ .018)
and no significant difference observed around 4 Hz (minimal p
value found at 3Hz ¼ 0.17) (Fig. 1B).

A voxel-wise analysis of interhemispheric coherence showed
that this increase during the BBs conditionwas relatively specific to
the primary auditory cortex, although changes were also observed
in frontal and occipital areas (Fig. 1C).

3.2. Experiment 2

We observed an improvement in the dichotic digit test in both
conditions (BBs t17 ¼ 5.55, p < .001; MBs t17 ¼ 2.64, p ¼ .02) but no
statistically significant difference between conditions (t17 ¼ 0.268;
p¼ .79) (Fig. 2). Bayes factor confirmed the null effect showing that
Ho was around 5 times more likely than the alternative hypothesis
(B ¼ 0.18). Complementary statistical analysis revealed that the
performance achieved before the auditory stimulus (i.e. baseline
score) was negatively correlated to the improvement after exposi-
tion to BBs (r ¼ �0.576; p ¼ .01). Conversely no similar correlation
was observed with improvement under MBs (r ¼ �0.11; p ¼ .65).
Please cite this article in press as: Solc�a, M., et al., Binaural beats increase
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4. Discussion

In this study we found that, compared to MBs and resting state,
BBs increased interhemispheric coherence between the auditory
cortices. Moreover, both 10 Hz and 4 Hz beats increased coherence
selectively in the alpha band. These changes in oscillation syn-
chrony were not associated with changes in amplitude. Despite
these electrophysiological findings, no corresponding behavioral
effect could be demonstrated after the stimulation.

Our study provides the first evidence for the long suspected
increased interhemispheric synchrony under BBs and insights into
underlyingmechanisms. Our observation is comparable to previous
interhemispheric alpha-band coherence between auditory cortices,



Fig. 2. Behavioral performance in dichotic digit test. Subjects improved after both
stimulation conditions, but no statistically significant difference between BBs and MBs
was found (p ¼ .79).
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reports that cognitive tasks can modify alpha-band coherence. For
example, increased alpha oscillation synchrony has been reported
during object recognition (Mima et al., 2001), spatial attention
(Doesburg et al., 2009), error processing (van Driel et al., 2012),
mental calculation (Palva et al., 2005) or memory tasks (Haegens
et al., 2010). We consider BBs as a challenging listening situation
with a binaural perceptual conflict that the auditory system solves
by increasing communication between both auditory cortices. This
in turns leads to an increase in phase locked synchrony among
neurons oscillating in alpha band. Hence, we surmise that the in-
crease in the alpha-band coherence observed here reflects binaural
integration.

One might be surprised by the selective effect in alpha fre-
quencies only. Neurons preferably oscillate at certain frequencies
that are typically biologically important (Herrmann, 2001). As for
several other sensory modalities, alpha oscillations are the pre-
dominant frequency in the auditory cortex and can be modulated
by auditory stimuli (Hartmann et al., 2012; Straub et al., 2014). We
postulate that the effect of BBs on interhemispheric communica-
tion is restricted to the alpha band because it is the main sponta-
neous oscillation band and is involved in most of the interactions
between cortical areas (von Stein et al., 2000).

Conversely, we didn't find an increase in power during 10 Hz
and 4 Hz BBs compared to rest or the corresponding MBs. The
absence of alpha power modulation during 10 Hz BBs is consistent
with previous studies (Goodin et al., 2012; Vernon et al., 2014).
Regarding the lack of modulation of theta power during 4 Hz BBs,
both similar (Wahbeh et al., 2007) and opposite results (Brady and
Stevens, 2000; Karino et al., 2006; Pratt et al., 2010) have been
reported in the literature. These studies have different designs in
terms of recording device (EEG vsMEG) or exposition time (from 2 s
up to 20 min) that could account for these discrepancies. In any
case, consistent with our findings, increase in alpha oscillation
synchrony has already been reported several times without cor-
responding modification of oscillation power (Mima et al., 2001;
Vanni et al., 1997).

Some authors have hypothesized that EEG changes observed
under BBs are elicited through an entertainment effect (Vernon,
2009), but our findings cannot be explained by this mechanism.
We found that BB stimulation with 4 Hz beats increases
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interhemispheric coherence in non-harmonic alpha frequencies,
which is difficult to bring in linewith entrainment. Moreover, in our
study coherence increased independently of power changes
whereas synchronization of neuronal firing to the frequency of the
beating stimulus would theoretically lead to an amplitude increase
of the corresponding EEG frequency. On the basis of these findings,
we assume that the increase in interhemispheric coherence
observed here could not be explained by synchronization to the
external rhythmic stimulus.

Given the observed electrophysiological effect, we tried to
improve binaural auditory discrimination abilities using BBs in
healthy subject. However, no significant effect was observed
compared to a monaural control condition. One possible explana-
tion for this finding is that our behavioral task was not sufficiently
sensitive to reveal an improvement in auditory function. However,
dichotic digit tests have been successfully used to assess inter-
hemispheric integration (Musiek, 1983; Bellis and Wilber, 2001;
Westerhausen and Hugdahl, 2008). A more likely explanation is
that the increase in interhemispheric collaboration was limited to
the simulation period and not associated with a corresponding
aftereffect at the time at which we performed our dichotic digit
task. It would have been interesting to record EEG not only during,
but also after auditory stimulation in order to confirm the lack of
aftereffect also on the neural level.

Our study does not exclude that repetitive BBs stimulation over
several days would eventually result in measurable aftereffects.
However, there is currently no evidence for this possibility. Finally,
we found that the less the subjects were able to distinguish
binaurally presented numbers at baseline, the more BBs increased
their performance. Since no such correlationwas found for MBs, we
might speculate that BBs could be more beneficial for patients with
impairment in interhemispheric interaction. This is consistent with
previous observations. For instance, Brady and Steven found that
hypnotic susceptibility increased only among low and medium-
susceptible subjects (Brady and Stevens, 2000). However, this will
need to be confirmed by more robust evidence.

In conclusion, this study demonstrates for the first time a
modulation of interhemispheric coherence by BBs. However, a
single session of BBs does not seem to result in corresponding
behavioral aftereffects of improved interhemispheric
communication.
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